Infinitely many homoclinic solutions for fractional discrete Kirchhoff–Schrödinger equations

نویسندگان

چکیده

Abstract In the present paper, we consider a fractional discrete Schrödinger equation with Kirchhoff term. Through fountain theorem and dual theorem, obtain two different conclusions about infinitely many homoclinic solutions to this equation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinitely Many Homoclinic Solutions for Second Order Nonlinear Difference Equations with p-Laplacian

We employ Nehari manifold methods and critical point theory to study the existence of nontrivial homoclinic solutions of discrete p-Laplacian equations with a coercive weight function and superlinear nonlinearity. Without assuming the classical Ambrosetti-Rabinowitz condition and without any periodicity assumptions, we prove the existence and multiplicity results of the equations.

متن کامل

A VARIATIONAL APPROACH TO THE EXISTENCE OF INFINITELY MANY SOLUTIONS FOR DIFFERENCE EQUATIONS

The existence of infinitely many solutions for an anisotropic discrete non-linear problem with variable exponent according to p(k)–Laplacian operator with Dirichlet boundary value condition, under appropriate behaviors of the non-linear term, is investigated. The technical approach is based on a local minimum theorem for differentiable functionals due to Ricceri. We point out a theorem as a spe...

متن کامل

Infinitely many radial solutions for the fractional Schrödinger-Poisson systems

In this paper, we study the following fractional Schrödinger-poisson systems involving fractional Laplacian operator { (−∆)su+ V (|x|)u+ φ(|x|, u) = f(|x|, u), x ∈ R3, (−∆)tφ = u2, x ∈ R3, (1) where (−∆)s(s ∈ (0, 1)) and (−∆)t(t ∈ (0, 1)) denotes the fractional Laplacian. By variational methods, we obtain the existence of a sequence of radial solutions. c ©2016 All rights reserved.

متن کامل

Infinitely Many Solutions for a Class of Sublinear Schrödinger Equations

where V : R → R and f : R × R → R. In the past several decades, the existence and multiplicity of nontrivial solutions for problem (1.1) have been extensively investigated in the literature with the aid of critical point theory and variational methods. Many papers deal with the autonomous case where the potential V and the nonlinearity f are independent of x, or with the radially symmetric case...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Continuous and Discrete Models

سال: 2023

ISSN: ['2731-4235']

DOI: https://doi.org/10.1186/s13662-023-03777-1